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 I. Amino Acids 

     A. Alkylamino Acids: :-Alkylamino acids, L-proline, L-valine. 

     B. Hydroxyamino Acids: L-Serine, L-threonine, D-allothreonine, L-isoserine. 

     C. Amino-amino Acids: L-2,3-Diaminopropionic acid, L-2,4-diaminobutyric acid. 

     D. Carboxyamino Acids: L-Aspartic acid, 3-amino-pentanedioic acids. 

     E. Thioamino Acids: D-Penicillamine, D- Or L-methylcysteine, L-cysteine, 

         L-methionine. 

     F. Amido-amino Acids: L-Asparagine. 

II. Carbohydrates 

     A. D-Mannitol. 

      B. D-Glucosamine. 

      C. D-Glucose. 

III. Other Chiral Material 

     A. Acyclic Sources. 

     B. Other Natural Products.

   It will be clear to those interested in the field of new antibiotics, that the synthesis of azetidines 

and azetidinones, the basic ring system of ~-lactam antibiotics, has gained crucial importance as a 

result of recent developments in that area. Since the first synthesis of an azetidine in 18881) and of a 

fi-lactam in 19072), a number of reviews and books have dealt with synthetic methodology3-13) dis-

playing nearly every conceivable way of elaboration of this structural unit. However, there has been 

limited focusl4,15) on enantiospecific constructions of chiral azetidines, which suggested the present 

review. 

   The scope of this review is to underline the principles for the enantiospecific synthesis of azetidines 

and 18-lactams. Emphasis will be placed upon the choice of starting material and ring closure methods. 

Approaches to chiral azetidines that involve degradation of natural material (penicillins or cephalo-

sporins), modifications of readily available j3-lactams (introduction of side-chains, elaboration of a 

second ring), asymmetric induction (enantioselective cycloadditions) or synthetic processes which 

have only been carried out with racemic material although theoretically applicable to optically active 

starting material will not be dealt with in this paper. 

   The various approaches to be discussed will be presented according to the class of chiral starting 

materials employed; at first amino acids, then carbohydrates and finally miscellaneous derivatives.

1. Amino Acids

A. Alkylamino Acids 

Simple chiral /3-amino acids have been used to prepare optically active ,9-lactams bearing only alkyl
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substituents a to nitrogen. 

   These syntheses are based on modifications17~19) of the powerful GRIGNARD-mediated cyclization 

procedure discovered initially by BRECKPOT16). For example, -phenyl -S-alanine (1) whose optical 
integrity was demonstrated by the absence of peaks for the diastereoisomer in presence of a chiral 1H 

NMR shift reagent, was transformed into its bistrimethylsilyl derivative 2 and then cyclized to the op-

tically active azetidinone 3 using ethylmagnesium bromide: The (-)-4-phenyl-2-azetidinone (3) thus 

obtained was then further transformed into the naturally-occurring bis 8-membered ring compound, 

homaline20,21).

   Similarly, optically active a-disubstituted-,13-alanines 4 were cyclized using GRIGNARD reagents to 

give 3,3-disubstituted- lactams 5 22~26,163)

   These chiral azetidinones were used in chiroptical studies25,27) or as intermediates in the syntheses 

of optically active isocyanides28) and 3-amino-l-propanols29). 

   The simplest optically active substituted 3-lactam, (S)-2-methylazetidin-4-one (7) was prepared 

from a JV-protected 3-methyl-,s-alanine 6 via the corresponding acid chloride. After deblocking 7 

was obtained30). Its configuration was proved by an independent X-ray crystallographic analysis31) 

which allowed the correction32) of a previous misassignment of this structure33).

   (R)-2-Methylazetidin-3-one (9) was obtained during an attempted Arndt-Eistert homologation of 

8 derived from alanine34) .

   Another amino acid, L-proline, served as the starting material in the synthesis of the basic skeleton 

of carbocyclic analogues of penicillins35). Thus, in several steps, the homo-proline derivative 10 was 

obtained without racemization. Formation of the bicyclic system 11 was then effected in low variable
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yields (1 ~ 12%). However, yields over 40% were estimated by gas chromatography which could be 

explained in terms of the inherent unstability of 113035). 

   L-Valine methyl ester (13) has been used in a MICHAEL-type condensation with dehydroalanine 12 

giving rise to 14 (together with its epimer). After purification, ring closure was effected with dicyclo-
hexylcarbodiimide (DCC) to give 15 which was then compared to phenoxymethylpenicillin-derived 

authentic material. Although the optical rotation was only half that of the expected value, it was shown 

that racemization had occurred after ring closure36~39).

   B. Hydroxyamino Acids 

   Serine and threonine are the most familiar examples of this class and they have been used in a 

number of approaches to chiral ;s-lactams and in particular for the total syntheses of monocyclic B-

lactams. As the 3-hydroxyamino acids, serine and threonine, differ only in the presence of a methyl 

group they will be discussed simultaneously. 

   Several research groups have established the basic requirements for ring closure in which a leaving 

group is displaced by a nitrogen40), so as to allow formation of the 4-membered ring:

   For example, serine-derived 16 was condensed with O-benzylhydroxylamine to give 17 which upon 

sodium hydride treatment gave 18 in ~ 80 % yield41,42) . This sequence was considered as a model 

study and conditions were then sought for efficient direct ring formation route from a simple protected 

serine.
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   A synthesis was developed 'i hose major feature42) was the use of a combination of the hydroxamate 

moiety and a MITSUNOBU type ring closure (diethylazodicarboxylate (DEAD)-triphenylphosphine)43) 

After deblocking44) the synthon 19 was isolated. Degradation of 19 led to optically pure L-2,3-diamino-

propionic acid, thereby confirming the retention of chirality during the synthesis.

   This short efficient scheme was subsequently applied to the total synthesis of 3-aminonocardicinic 

acid (3-ANA) derivatives. Use of a tent-butyloxycarbonyl (Boc) protective group for the side 

chain amino function permitted selective deprotection of the hydroxamate to give optically active 2045)

More recent work by the same team shed light on the actual mechanistic pathways and disclosed possible 

reaction intermediates by means of interesting model reactions46). As a consequence, previous results 

and reaction conditions were optimized46). 

   Similarly, biogenetically-modeled cyclization of an optically active dipeptide had been proposed 

earlier"Serine-derived 21 was coupled with optically active 22 to give dipeptide 23. Under 

MITsUNoBU conditions43) 23 was cyclized to a mixture of epimers 24 and 25 which upon hydrogenolysis 

in acidic medium gave optically pure (-)-aminonocardicinic acid (26) identical with natural material47).

   These results were later substantiated by mechanistic studies which showed that the ratio of epimers 

(2: 1) obtained was independent of the proportion of DEAD to triphenylphosphine employed48),. If 

either of the pure isomers was treated under the same reaction conditions, the same 2: 1 product ratio 

was observed revealing that product formation was equilibrium controlled. When the less nucleophilic 

reagent triethyl phosphite (1 equivalent) was used, a single isomer could be isolated; however epimeri-

zation takes place if an excess of this reagent is used suggesting a unique mechanistic situation48) 

   It is clear from other works49~51) that the choice of protecting groups is also critical. For example, 

serine-derived 27 was smoothly cyclized to 28 whose enantiomeric purity was demonstrated using a 

chiral NMR shift reagent. Unfortunately the same reaction failed when carried out with the cor-
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responding threonine derivative. If however the side-chain amino group was protected using its 

phtaloyl derivative, as in 29, then 3-lactam 30 could be prepared.

   If one changes the nature of the amide nitrogen substituent however application of the MITSUNOBU 

conditions to threonine-derived 31 leads to 32. The benzyloxycarbonyl (Z) group can still be used with 

serine-derived 33, which enabled the synthesis of an analogue of nocardicin52). 

   MILLER and coworkers showed in their most recent contribution53) that use of expensive reagents 

can be avoided as demonstrated in their practical synthesis of monobactams. By simply treating Z-

serine (34) with hydroxylamine followed by acetic anhydride, crystalline 35 was obtained in 63 % yield. 

Ring closure (triethylamine-triphenylphosphine) followed by mild base (sodium hydrogen carbonate) 

hydrolysis gave 36 in ~ 50% yield. Compound 36 can either be reduced to 9 or sulfonated to yield 

synthetic monobactam 37.

   The latter compoud d has also been made available starting with the condensation product between 

Z-serine and Z-cycloserine54). Upon treatment of product 38 with sodium methoxide, the hydroxyl-

amine derivative 39 was obtained. When MITSUNOBU conditions were applied to 39 a cyclization pro-

duct was obtained; however it was not isolated but directly treated with a strong non nucleophilic base 

to afford 36.

   Similarly it was shown that upon reaction of threonine with ortho-phenylsulphenyl chloride followed 

by coupling with O-benzylhydroxylamine, the intermediate 40 could be obtained. After sequential

27 R=H, R' =Z R"=p-CH3C6H4 

29 R = H, R' = Phtaloyl, R" = p-CH3C6H4 

31 R = CH3, R' = Ac, R" = OBzI 

33 R = H, R' = Z, R" = S-(1-Benzoyltetrazol)yl
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treatment of 40 with mesyl chloride and sodium hydride, internal displacement of the secondary leaving

group afforded 4154). The overall yield of this 

route was later improved by a careful choice of 

protecting groups. The threonine derivative 42 

was thus efficiently cyclized to 43 the product be-

ing isolated without the need for chromatogra-

phic purification55).

   This synthetic methodology was next applied to the synthesis of chiral monobactams starting from 

sulfonylated acyclic derivatives resulting in a more direct route to these important derivatives. 

Threonine was converted into 44 upon sequential treatment with mesyl chloride (MsCl) and picoline/ 

sulfur trioxide complex. Ring closure to 45 was then simply achieved (>90%) using potassium or 

sodium hydrogen carbonate56,57).

   The inherent chirality of threonine has been retained in a totally different approach by a group 

from Sankyo58). Conversion of threonine to the a-bromo acid 46 was achieved with retention of con-

figuration, and this derivative was transformed by conventional means into 47. When treated with 

two equivalents of lithium hexamethyldisilazide, 47 cyclized cleanly giving 48 in 61 % yield. Interest-

ingly this cyclization was shown to proceed with retention of configuration at the carbon bearing the 

bromine. This was explained by the formation of an intermediate epoxide through a double inversion 

process.

   A similar epoxide 50 was later intentionally prepared by base treatment of 49 as an intermediate 

in the preparation of an optically active sulfone59). Alkylation at nitrogen of 49 with phenylthiomethyl 

chloride followed by oxidation gave 51. Treatment of 51 with n-butyllithium (BuLi) at -50-C in 

hexamethylphosphotriamide gave a 83 % yield of a single isomer which was shown to be the trans-

derivative. Deblocking then afforded 52, a carbapenem synthetic intermediate in eight steps from 

threonine.

40 R = o-NO2C64S, R' = OBzl 

42 R = Boc , R' = OCH3

DMP : 2,4-Dimethoxyphenyl

R = p- OCH3C6H4
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   A closely related chiral starting material is D-allothreonine easily derived from threonine60), which has 

been used in the synthesis of chiral monobactams, in the same manner as described above for threonine57). 

It has also been used in a much longer route to such optically active 3-lactam sulfones58). The bromo 

derivative 53 obtained (retention of configuration) from allothreonine was converted to 54. A key 

transformation relies on the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) mediated ring closure of 54 

to give 55 in 95 % yield. In this case protection of the hydroxyl group as the acetate avoided formation 

of an intermediate epoxide thus rendering possible ring closure by a clean SN2 process; nine additional 

steps were necessary to convert 55 to 3-lactam 5661).

   The mechanism of the ring closure was examined in further studies62) and for example the unpro-

tected alcohol 57 was shown to give three different [5-lactams on treatment with DBU. Compound 

58 was the major product; the epimeric lactone 59 was shown to result from the opening of an inter-

mediate epoxide.

   Another hydroxyamino acid, isoserine (a serine in which hydroxyl and amino groups have been 
"exchanged")

, has been used in a convenient and high yielding synthesis of nocardicin. This was made 

possible by use of the UGt 4-component condensation reaction (4 CC)63,64) as shown below:

   Only four steps are then necessary to convert 60 into 3-aminonocardicinic acid (3-ANA) (26) 

in a 30% overall yield65).
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   C. Amino-amino Acids 

   It is interesting to note that the same Unt-type reaction failed with the related L-2,3-diaminopro-

pionic acid (a serine in which the hydroxyl group has been replaced by an amino group)66). However, 

when the A-2 protected compound 61 was reacted with p-benzyloxybenzaldehyde and butylisonitrile 

in methanol for three days the desired epimer 62 was obtained in 36 % yield. This resulted in another 

practical synthesis of 3-ANA since the unwanted epimer which was parallely formed in the reaction 

could later be epimerized. The overall yield from 61 was 38%67,68)

 L-2,4-Diaminobutyric acid (63), another o)-amino-amino acid, was used as the chiral starting 

materialP69,71) in the synthesis of naturally occurring azetidine-2 carboxylic acid (65). After replacement 

of the vicinal amino group by a chlorine to give 64, displacement of the latter by the terminal amino 

group occurred to give 65. However the optical purity was not reported.

   D. Carboxyamino Acids 

   L-Aspartic acid has been used as a convenient chiral source in several enantiospecific syntheses of 

azetidinones. 

   For example, it was chosen as the starting material in a spectacular total synthesis of (±)-thiena-

mycin7l~77). One of the key steps was the one-pot GRIGNARD reagent-induced ring closure of the mono-

silylamine 67 derived from aspartic acid (66). Azetidinone 68 crystallized directly from the reaction 

mixture in over 70%. yield. The enantiomeric purity of 68 was checked by its reconversion to the start-

ing amino acid 66 which was subsequently shown to retain its optical activity75,83) . 

   Similarly, aspartic acid was used in a closely related project78). The free carboxylic acid group
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of 69 was homologated to yield an optically active 3-aminopentanedioic acid in which the two carboxylic 

groups are differentiated (for other synthetic approaches to these diacids, vide infra). After amino 

protecting group exchange and selective deblocking of one of the ester groups to give 70 cyclization was 

brought about on reacting the corresponding acid chloride with the secondary amine derived anion. 

Thus a 66% yield of crystalline 71, an intermediate in carbapenem syntheses, could be obtained78). 

   Aspartic acid has also used as a starting material in a four component condensation route 79) 

. Condensation of the a-benzyl ester 72 with benzaldehyde and phenyl isocyanide gave (30 % on a large 

scale) a mixture of diastereoisomers 73. Conditions for the successful conversion (PCl5, then CH3OH) 

of the amides 73 to the corresponding ester was a key feature of the synthesis especially since a single 

isomer 74 was then formed, suggesting a thermodynamic control.

   Deuterium-labeled aspartic acid (75) has re-

cently been used in the unambiguous determina-

tion of NMR resonances of monocyclic 

lactams80). Selective esterification of the 3-car-

boxyl group followed by treatment with ammonia 

then tosyl chloride (TsCl) afforded a labelled 

sample of 76 which was further transformed into 

77 (through an HOFFMANN rearrangment which 

occurs with retention of configuration). Cycli-

zation to lactam 78 occurred, although in low 

yield, by use of the conditions developed by 

OHNO and coworkers81) for such p;-amino acids.

   The latter group was involved in a combination of chemical and enzymatic procedures to obtain 

3-aminopentanedioic acids in optically active form (for another approach vide supra). The key problem 

was the differentiation of both ester groups of 79 while inducing optical activity. Early experiments82) 

showed that pig liver esterase hydrolyzed 79 very efficiently; the optical purity was low however (ca 

40 % enantiomeric excess) which was explained by participation of the amino group in a concomitant 

chemical hydrolysis. Therefore this amino group was protected as the benzyloxycarbonyl (Z) deriva-

tive which upon treatment with pig liver esterase gave 80 in a 93 % yield of high optical purity. Hydro-

genolysis of 80 then provided 81 and application of the recently established S-lactam forming con-
ditions81) provided 82 in good yield, which is clearly superior to the 10~30% yield obtained with



1112 THE JOURNAL OF ANTIBIOTICS OCT. 1984

dicyclohexylcarbodiimide (DCC) ring closure method59). Ring closure has been brought about as 

well by treatment of the corresponding acid chloride with triethylamine84,85). 

   It was disclosed recently that about 500 species of organisms were screened for enantiospecific 

hydrolysis of prochiral 79. An enantiomeric excess of 98.1% has been obtained with Flarobacterium 

lutescens86). Incorporation of the hydroxyisopropyl side-chain from 83 thus obtained occurred in a 

completely stereo-controlled manner; no other isomer could be detected. Then, acid catalyzed cleavage 

of 84 followed by persilylation gave the derivative 85 which was immediately submitted to a GRIGNARD 

induced cyclization to yield optically active i3-lactam 86, a key intermediate in the total synthesis87). 

This resulted in a stereo-controlled synthesis of carpetimycin A.

   E. Thioamino Acids 

   The outstanding and pioneering work of SHEEHAN and HENERY-LOGAN which has been central to 

the early ;3-lactam forming reactions and which culminated in the syntheses of optically active peni-

cillines88,89) rely on a degradation product of penicillins, namely the thioamino acid D-penicillamine. 

The success of the syntheses depended on the choice of protecting groups and on the mild ,5-lactam 
ring closure which was brought about late in the reaction scheme. (An earlier attempt by Du VIGNEAUD 

and coworkers90) will not be detailed here as yields in the range of 0.1 % were obtained in the cycliza-

tion step). 

   Condensation of D-penicillamine 87 with phtalimidomalonaldehyde afforded among other isomers 

the suitably derivatized thiazolidine 88. After replacement of the phtalimido group by the phenoxy-

methylpenicillin side-chain to give 89 and liberation of the protected groups, the stage was set for the
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critical ring closure. The discovery91) that aliphatic carbodiimides are capable of forming amide bonds 

under very mild conditions suggested their use in the cyclization process. This allowed isolation, for 

the first time in an efficient manner, of a synthetic penicillin, the potassium salt of phenoxymethyl-

penicillin (90)83.99). It is significant to note that ;5-lactam formation was brought about in the penulti-

mate step of the synthesis. 

   This critical cyclization step was carried out subsequently at an earlier stage in the synthetic 

scheme92,93), which was made possible by the chemical differentiation of both amino groups: D-peni-

cillamine-derived thiazolidine 91 which bears a tritylamino group so as to preclude azlactone forma-

tion, could be cyclized with water soluble diisopropylcarbodiimide in 25% yield93). This gave access 

to the characteristic bicyclic system of penicillins. Subsequent deblocking of the amino group allowed 

(in contrast to previous work) obtaining of 6-aminopenicillanic acid (92), thus enabling elaboration of 
various side-chains.

   Ring closure from a thiazolidine such as 93 has been achieved using a different approach involving 

acylation of nitrogen and formation of an organomercury derivative. Thermal decomposition of inter-

mediate 94 thus obtained afforded the lactam 95 as a minor product (10%). It was identical with an 

authentic sample derived from (+)-penicillanic acid thereby confirming the absolute configuration 

of the newly created chiral centers94).

   The nor-analogues of phenoxymethylpenicillin i.e. compounds lacking a methyl group have been 

prepared using essentially the same strategy as developed previously by SHEEHAN et a1.89.93). Starting 

with either R- or S-methylcysteine95,96) derivatives 96 and 97 respectively are obtained; cyclization with 

DCC then affords isomeric /;-lactams 98 or 9997). 

   Cysteine from which the optically active thiazolidine 100 is similarly prepared98) has been used in 

exactly the same way for the preparation of the bis nor-analogue 10199).
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   Cysteine has also served as the starting material for the mercury induced ring closure which was 

described above100). 

   But one of the most spectacular use of L-Cysteine has been in the total synthesis of cephalosporin C 

by WOODWARD and coworkers101,102) Reaction of the thiazolidine derivative 102 with excess dimethyl 

azodicarboxylate resulted in stereospecific functionalization of the carbon vicinal to the sulfur atom 

giving 103 after oxidative cleavage. The alcohol group was then conventionally replaced by an amino 

group with inversion of configuration, the structure of 104 being proven by X-ray analysis. Cycliza-

tion to 105 was then achieved using triisobutylaluminium; the structure of 105 was again confirmed by 

radiocrystallography.

   It is of interest to note that 105 contains the structural elements common to both the penicillins and 

the cephalosporins, and as such can be considered as a key intermediate. Six steps, for example, are 

necessary for conversion of 105 to cephalothin and eight steps to get cephalosporin C101,102) 

   L-Cysteine has also been used by several groups in a biomimetic approach to lactams i.e. con-

struction of the azetidinone ring from acyclic peptides precursors. 

   For example, thiazolidine 106 which corresponds to the dehydrated form of an N-acyl cysteine 

derivative, was treated with sodium methoxide and excess methyl iodide to afford 107. The methyl 

group thus introduced avoids thiazole formation during the succeeding bromination step which is next 

carried out on the coupling product with valine. This gave 108 as a mixture of diastereoisomers. 

Treatment of 108 with potassium hydride in tetrahydrofuran containing lithium perchlorate yielded 

the bicyclic 3-lactam 109 which demonstrated the feasibility of this approach103).
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   The stereospecific conversion of an acyclic peptide was simultaneously demonstrated to be a viable 

route by another group"). Protected cysteine 110 was coupled with L-valine methyl ester to give the 

dipeptide 111. Stereospecific functionalization at C-3 of the cysteine moiety was then achieved using 

benzoyl peroxide. The high stereo-selectivity observed presumably resulted from shielding of the upper 

face of the thiazolidine by the valine residue. Treatment of this benzoate 112 with hydrogen chloride 

afforded 113 with retention of configuration suggesting a cationic intermediate104). Ring closure was 

then brought about with sodium hydride to give 114 in 81 % yield105-107).

        approach was later used by the same group108) and by others109) in a shortened entry to the 

penicillin ring system. 
   Similarly, a total synthesis of nocardicin A relied on the same strategy of thiazolidine function-

alization and (-lactam ring closure110). L-Cysteine-derived 110 was condensed with o-phenyl glycinate 

115 to give 116. Benzoyl peroxide functional ization followed by chlorination and sodium hydride 

treatment afforded 117 as the major product110). Compound 117 was a key intermediate in 3-ANA 

synthesis.

   Finally, L-cysteine has been used in a different manner in a successful application111) of an internal 

displacement of an hydroxamic ester by a sulfone-stabilized carbanion. L-Cysteine was converted 

to 118 which was the methylated and further condensed with methyl hydroxylamine to give hydroxamic 

acid 119 in 55% overall yield. Two steps (introduction of leaving group on the hydroxamic moiety 

and oxidation of the sulfone) afforded 120 which was viewed as a model biomimetic intermediate. 

Potassium tert-butoxide treatment then gave ;3-lactam 121 in -50% yield111). 

   Another thioamino acid, L-methionine, has been used as the chiral starting material in the synthesis
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of optically pure azetidine-2-carboxylic acid, which had earlier been prepared in partially racemized 

form. The present route is advantageous in that substitution reaction does not occur on the asym-

metric carbon, thus precluding possible racemization. Tosyl-L-homoserine lactone (122) which is 

easily prepared,112) from tosyl-L-methionine113) was treated with hydrogen bromide to afford 123. 

Cyclization to the desired azetidine 124 was smoothly brought about upon sodium hydride treatment 

in 95% yield. Final deprotection gave 65, in good overall yield114,115).

   F. Amido-amino Acids 

   What appears to be the earliest example,,") of chiral azetidinone synthesis is the thermal ring closure 

of asparagine (100`C, 24 hours, pH 6.7) described to give lactam amino acid 125 in 4-5% yield. 

However, doubt can be cast on these results, since it was stated that 125 was stable to acidic hydrolysis 

(6 N HC1, 100C, 24 hours116), and subsequent work has since shown that this compound is unstable 
at room temperature83,117).

   A more conclusive use of L-asparagine can be found in its UGi-type condensation with aldehydes 

such as pyruvaldehyde cinnamaldehyde or benzaldehyde in presence of tert-butyl isonitrile. This 

gave access to the chiral azetidinones 12118-120)
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II. Carbohydrates

   Carbohydrates represent another source of abundant chiral material. These can be used to con-

trol a single chiral center as will be seen first or a more elaborate use of their stereochernical features 

can be made as will be seen subsequently. 

    A. D-Mannitol 

   The inherent symmetry of D-mannitol has been used as a convenient source of 2,3-protected glycerol 

or glyceraldehyde through oxidative cleavage of its 1,2-5,6-diacetonide 127.

   The preparation of optically pure 128 was made possible by a standard sequence of reactions121) 

Further transformations afforded the functionalized lactone 129 which was opened122) with propane 

l,3-dithiol in presence of boron trifluoride etherate to give acyclic carboxylic acid 130. A CURTIUS-

SCHMIDT type rearrangement gave carbamate 131 in 72% yield after saponification and protection of 

the newly created amine function. Hydrolysis of the protected aldehyde followed by oxidation and 

removal of the amine protecting group gave the key amino acid 132 which was cyclized to give the 

desired -lactam in over 76 yield, employing the procedure developed by OHNO and coworkers81). 

Compound 133 is an intermediate in carbapenem syntheses123,124). It should be noted however that 

15 steps were required for the preparation of 133 which distracts from the practicability of this route.

   Fewer steps from mannitol were needed to prepare a closely related azetidinone125). WITTIG con-

densation from protected glyceraldehyde 134 afforded 135. On reacting 135 with benzylamine at 
-50°C a single isomer 136 was formed in 85% yield . This intermediate 136 was then converted in 46 

overall yield to 13-lactam 137 using standard procedures. Compound 137 was later converted to azeti-

dinone 138. Intermediate 136 was also used in the synthesis of the other enantiomer, 140. Five 

steps were necessary to convert 136 into aldehyde 139 which was oxidized to the acid and cyclized as 

above125.

127

CH(COOC2H5)2

128

129 130 131

132 133
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   A final use of mannitol can be found in the ring closure of glyceraldehyde-derived 141 (obtained 

by a SHAPIRO reaction) which is brought about with a strong base.

This has been carried out with both enantiomers126).

   B. D-Glucosamine 

   D-Glucosamine is a second example of a carbohydrate in which only one chiral center is retained, 

in the elaboration of a thienamycin precursor. In a number of classical steps, 142 was transformed into
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143127). After acid hydrolysis, one carbon homologation and deprotection, the amino acid 144 was 

obtained. This intermediate on treatment with 2,2'-dipyridyl disulfide and triphenylphosphine81) 

gave the optically active P-lactam 145 in 89% yield. This was further converted to 146 an key inter-
mediate in thienamycin synthesis127)

C. n-Glucose 

   In contrast to all previous examples, glucose has been used as a chiral source in which more than 

one asymmetric center can still be found in the final ring-closed product. All examples refer to stereo-

controlled syntheses of thienamycin: the presence of three contiguous asymmetric centers in thienamycin 

suggested full use of glucose chiralities according to the following general retrosynthetic analysis:

   The first example was announced by DURETTE126~130) : D-glucose was conventionally converted to 

147. Lateral functionalization was then brought about by S,,z displacement of a triflate by an "naked" 

cyanide anion to give 148 which was then ring opened in presence of propanedithiol to yield 149. After 

hydrolysis to 150, ring closure to azetidinone 151, a precursor of thienamycin, could be effected in 51% 

yield using DCC in acetonitrile.

   In the second example131), introduction of the lateral carboxylic acid was obtained by a WITTIG 

reaction of the D-glucose derivative 152 which was oxidized and reacted with the lithium salt of methoxy-
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methyldiphenylphosphine oxide to give 153 (mixture of stereoisomers). Compound 153 was then con-

verted to the ester which was further oxidized to lactone 154. After hydrogenolysis, ring opening and 

esterification, amino acid 155 was obtained and then cyclized to (3-lactam 156 in 43 % isolated yield 

using DCC. 

   The third demonstration of glucose chirality transfer was reported almost simultaneously 132) 

Compound 157 which was derived from glucose was oxidized to ketone 158 and then reacted with the 

lithium derivative of O,O-dimethylformylphosphonate S,S-dimethyldithioacetal to give 159. Stereo-

specific reduction of 159 to 160 was performed with lithium aluminium hydride assuming prior coordina-

tion with the neighboring initially formed amine. Conventional manipulation then afforded 161 which 

is in equilibrium with the open form 162. As 162 was ring closed with DCC in the racemic series133, 134) 

the present work is a formal synthesis of (+)-thienamycin132)

   A. Acyclic Sources 

   Besides amino acids and carbohydrates several other chiral sources have been used as templates 

for the preparation of optically active /3-lactams. 

   For example, malic acid which is available in both enantiomeric forms appears to be a good pre-

cursor to C-2 and C-3 functionalized p-lactams135). Indeed L- (or D-) malic acid dimethyl ester (163)
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can be alkylated to give 164 and if desired isomerized to 165. After deprotection to the acid, the mono-

ester 167 can be selectively obtained through formation of intermediate lactone 166. Reaction of 167 

with benzylhydroxylamine followed by application of the MITSUNOBU cyclization conditions afforded 

168 whose optical purity was confirmed by NMR chiral shift studies. The same scheme was carried 

out with 165 and as D-malic acid has been equally chosen as the starting material, the preparation of 

all four optically pure (3-lactam isomers could thus be effected135, 136). 

   Tartaric acid is another abundant chiral source. In the present case L-tartaric acid has been con-

verted to trans-epoxysuccinic acid (169)137) which was opened with ammonia to yield L-erythro-,.3-

hydroxyaspartic acid 170. Selective monoester formation proceeded through a lactone as described 

above to yield 171 after protection of the amino group. Reaction with benzylhydroxylamine then 

afforded 172 which was cyclized to 173 (P(C6H5)3-DEAD) in -60% yield. As further transformation 

gives access to a free p-lactam nitrogen, these syntheses are very powerful especially since all four isomers 

of ,9-hydroxyaspartic acid have been described, thus giving access to any corresponding j3-lactams137)

   There are two additional examples of use of acyclic optically active material in the construction of 

r3-lactams; although strictly speaking these material are not optically pure, their use will nevertheless 
be outlined. 

   Asymmetric epoxidation of E-benzyloxybutenol (174) using L-diethyl tartarate as chirality con-

trol138) afforded the chiral epoxide 175 in 90% enantiomeric excess and 85%. chemical yield. After 

opening of the epoxide, the corresponding glycol was transformed uneventfully into amino acid 176 

which was then cyclized139) using the OHNO procedure to azetidinone 177, a usefull synthon in 13-lactam 

chemistry.

   The other example involved the formation of isoxazoline 180 which is obtained by cycloaddition of 

nitrile oxide 178 and (-)-menthyl crotonate 179 in 85 % enantiomeric excess. This oxazoline was re-

duced to 181 which was cyclized with ethyl magnesium bromide to p-lactam 182 after protection of the 

alcohol group as its silyl ether 140). The overall yield was 13 %.
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   B. Other Natural Products 

   A few examples of naturally occurring bicyclic azetidines, not related to /-lactam antibiotics, can 

be found in the literature and as such they will be briefly spoken of herein.

   The first of these, conidine (184), was synthe-

sized from optically active 2j3-hydroxyethyl-

piperidine (183) by sequential treatment with 

hydrochloric acid, then potassium hydroxide, 

thus affording 184 in 32 % yield141).

   The second example refers to pachystermine (186), a naturally occurring alkaloid, which was syn-

thesized in a large number of steps from epipachysandrine A (185), a minor alkaloid present in the same 

source 142,143) .

   Finally, a steroidal j9-lactam has been prepared from A-nortestosterone (187). Thirteen steps are 

necessary to convert 187 into 188 which is then cyclized to 189 with DCC in nitromethane144,145)
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   The last example describes the rearrangement which was observed during irradiation of synthetic 

190. The diazoketone on departure of nitrogen opened the 9-lactam ring to create a new four-mem-

bered nitrogen-containing ring, azetidinone 191146).

Conclusion

   Today j3-lactams represent without doubt the most important family of therapeutically useful anti-
biotics. This family has given birth to an increasing number of marketed compounds. Lately, or-

ganic synthesis and in particular total synthesis have gained importance as is evidenced by the forthcom-
ing marketing of totally synthetic molecules. 

   It is therefore expected that, due to a number of reasons of which cost is not the least, enantio-
specific construction of chiral 88-lactams, will prove to be a major tool in the production of new ,3-lactam 
antibiotics and other (8-lactamase inhibitors.

Addendum in Proof

   Since submission of this review article, a number of papers relevant to this subject have appeared 
in the literature. At first, more general works about azetidines147~149) and N-lactams150,151) can be 
found. Then, additional synthetic uses of L-serine and L-threonine in the stereospecific construction 
of monobactams152-154) have been described. Furthermore, the enantioselective synthesis of aspareno-
mycin C, starting with chiral 3-amino pentanedioic acid has been outlined155) and another use of L-
malic acid has been proposed156). The chiron approach157) has been successfully applied to the total 
synthesis of carbapenems starting with D-glucose158) or D-glucosamine159), respectively. Finally, three 
examples of the stereospecific elaboration of the ~-lactam moiety using a neighbouring chiral center 
as internal control have been recently announced; these make use of: 1) an oxazine derived from com-
mercially available (3R)-methylcyclohexanone160), 2) a 17-allyltricarbonyliron complex incorporating 

(S)-ce-methylbenzylamine161) and 3) a chromium carbene addition product with an optically active 
thiazoline ester162)
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